Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Clin Pract ; 12(4): 599-608, 2022 Aug 04.
Article in English | MEDLINE | ID: covidwho-1969114

ABSTRACT

During the last couple of critical years, worldwide, there have been more than 550 million confirmed cases of COVID-19, including more than 6 million deaths (reported by the WHO); with respect to these cases, several vaccines, mainly mRNA vaccines, seem to prevent and protect from SARS-CoV-2 infection. We hypothesize that oxidative stress is one of the key factors playing an important role in both the generation and development of various kinds of disease, as well as antibody generation, as many biological paths can generate reactive oxygen species (ROS), and cellular activities can be modulated when ROS/antioxidant balance is interrupted. A pilot study was conducted in two stages during the COVID-19 pandemic in 2021 involving 222 participants between the ages of 26 and 66 years. ROS levels were measured before an after vaccination in the blood samples of 20 individuals who were vaccinated with two doses of mRNA vaccine, and an increase in ROS levels was observed after the first dose, with no modifications observed until the day before the second vaccination dose. A statistically significant difference (p < 0.001) was observed between time points 3 and 4 (before and after second dose), when participants were vaccinated for the second time, and ROS levels decreased from 21,758 to 17,580 a.u. In the second stage, blood was collected from 28 participants 45 days after COVID-19 infection (Group A), from 131 participants 45 days after receiving two doses of mRNA vaccine against COVID-19 (Group B), and from 13 healthy individuals as a control group (Group C). Additionally, antibodies levels were measured in all groups to investigate a possible correlation with ROS levels. A strong negative correlation was found between free radicals and disease antibodies in Group A (r = -0.45, p = 0.001), especially in the male subgroup (r = -0.88, p = 0.001), as well as in the female subgroup (r = -0.24, p < 0.001). Furthermore, no significant correlation (only a negative trend) was found with antibodies derived from vaccination in Group B (r = -0.01), and a negative trend was observed in the female subgroup, whereas a positive trend was observed in the male subgroup.

2.
Medicines (Basel) ; 9(6)2022 Jun 15.
Article in English | MEDLINE | ID: covidwho-1903384

ABSTRACT

COVID-19 disease is still a major global concern because of its morbidity and its mortality in severe disease. Certain biomarkers including Reactive Oxygen Species (ROS), vitamins, and trace elements are known to play a crucial role in the pathophysiology of the disease. The aim of our study was to evaluate how certain biomarkers, such as ROS, biochemical indicators, trace elements in serum blood of 139 COVID-19 hospitalized patients, and 60 non-COVID cases according to age and sex variations, can serve as the predictors for prognosis of COVID-19 outcome. An attempt of correlating these biomarkers with the severity of the disease as well as with each other is represented. All subjects were hospitalized from April 2021 until June 2021. A statistically significant increase of B12 levels (p = 0.0029) and ROS levels (p < 0.0001) as well as a decrease in albumin and Total Protein (T.P.) levels (p < 0.001) was observed especially in the early stage of the disease before CRP and ferritin elevation. Additionally, a statistically significant increase in ferritin (p = 0.007), B12 (p = 0.035, sALT p = 0.069, Glucose p = 0.012 and urea p = 0.096 and a decrease in Ca p = 0.005, T.P p = 0.052 albumin p = 0.046 between stage B (CRP values 6-30 mg/L) and C (CRP values 30-100 mg/L) was evident. Thus, this study concludes that clinicians could successfully employ biomarkers such as vitamin B12, ROS and albumin as possible prognosis tools for an early diagnosis. In addition, the total biochemical profile can assist in the understanding of the severity of COVID-19 disease, and could potentially lead to a better diet or early pharmaceutical treatment to prevent some of the more acute symptoms.

SELECTION OF CITATIONS
SEARCH DETAIL